

INDUSTRIAL IMAGE PROCESSING 2D & 3D

Renè Klausrigler

Productmanagement "Identification & Measuring" April 2020

WEDINIAD

SICK Sensor Intelligence.

NOTES ON THE WEBINAR

- The Webinar will be recorded!
- If you would like to receive the presentation and / or the recording afterwards you have to sign GDPR!

https://s.sick.com/newsletter_registration_at-de

SICK

Sensor Intelligence.

INDUSTRIAL IMAGE PROCESSING 2D & 3D CONTENT

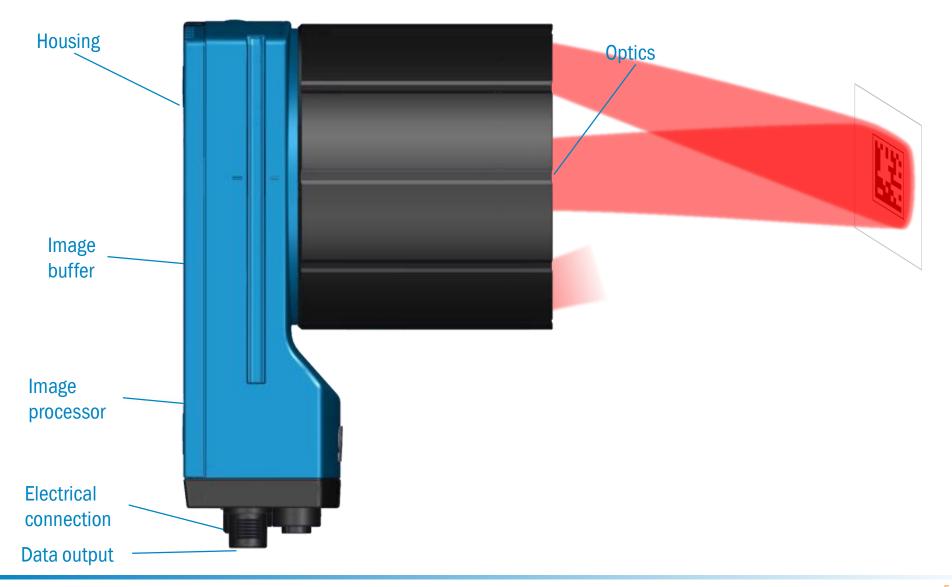
BASICS (2D – image processing)

- Working principle (explanations)
- Focal length & Lens
- ► Focus, aperture, depth of field
- Image-, sensor and object resolution
- Exposure, gain, blur, resolution, repeatability and accuracy

2. LIGHTING PRINCIPLES (2D – image processing)

- Basics (importance of light....)
- Different kind of lightings (ring light, dark field illumination, backlight...)
- 3. TARGET APPLICATION / PRODUCT PORTFOLIO (2D image processing)
 - 2D Vision

4. BASICS (3D – image processing)


- Working principle "Triangulation"
- Working principle "Time of flight"
- Working principle "Stereo"
- When tu use 3D technology

5. TARGET APPLICATION / PRODUCT PORTFOLIO (3D – image processing)

- Configurabel cameras
- Programmable cameras
- Streaming cameras

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. WORKING PRINCIPLE

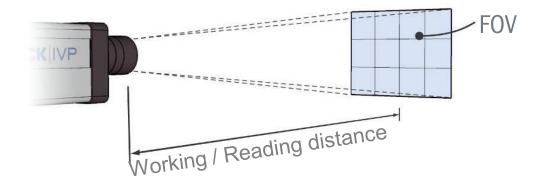
INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. CAMERA TYPES BY DIMENSION

- ID (line scan)
 - Collects gray or color profiles
 - Profiles can be assembled into an image => 2D
 - Scanning requires object movement

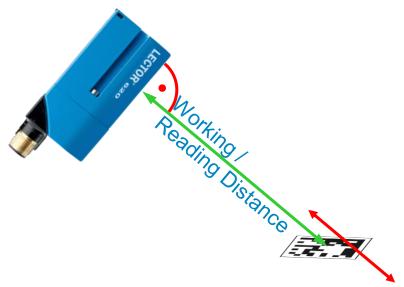
2D

- Acquires an area image
- Snapshot "click", no movement needed

3D


- Outputs a 3D image as a height map (seen from one direction) or a point cloud (360° imaging)
- Can be snapshot (stereo) or scanning (laser triangulation)
- MultiScan
 - ▶ 1D, 2D, 3D and more with the same camera, at the same time

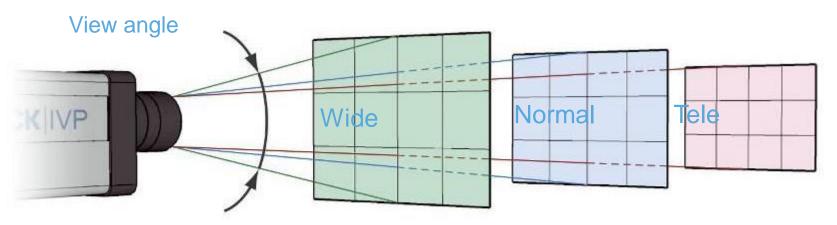
INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (FOV, WD/RD, DOF)



- Field of view (FOV)
 - ► Is what the camera sees (x & y)

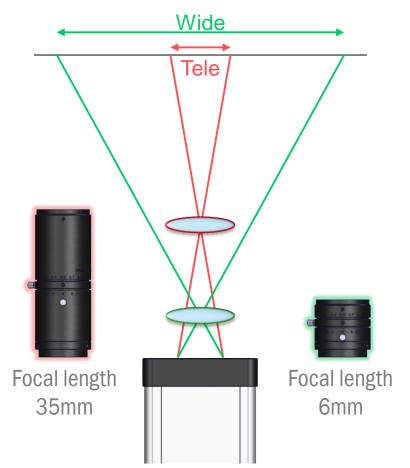
- Working or Reading Distance (WD/RD)
 - The Working Distance (WD) or Reading Distance (RD) is the lens-to-object distance

- Depth of Field (DOF)
 - Is the range in which a sensor can read a code, without changing focal position or lens.



INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (FOCAL LENGTH AND LENS)

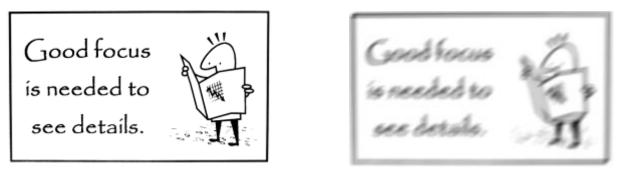
- The view angle of the lens determines how much of the visual scene the camera sees
 - Wide angle (short focal length) captures a large scene
 - Normal
 - Narrow angle, or tele (long focal length), captures a small scene



INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (FOCAL LENGTH AND LENS)

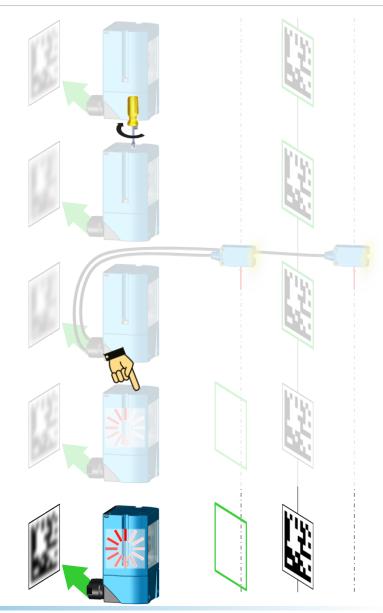
- Dependency
 - Focal length \leftrightarrow Field of view


Looking at a computer keyboard with different lenses

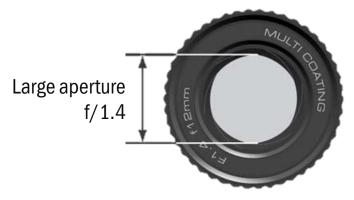

Focal length: 10 mm						
R	Τ	Z	U	1		
F	G	Н	J	"		
		В	N	M		

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (FOCUS)

• A sharp image is well focused


- The focus is used to sharpen the image. There are various types of focuses.
- ► Example:

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (TYPES OF FOCUSES)


- Fix Focus
 - The focus is set to a certain reading distance and can not be changed.
- Mechanical Focus
 - The focus can be changed mechanically during commissioning.
- Dynamic Focus
 - The focus can be changed during the reading gate by command or incoming event such as hardware input.
- Teach Auto Focus
 - The focus can be set automatically by the device, but only when commissioning the device NOT during reading mode.
- Auto Focus
 - The focus is automatically done by the device even during reading gate / trigger

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (APERTURE)

- The aperture is the hole inside the optics through which the light enters the camera
- A small hole means a high aperture number (e.g. f/12)

- Small hole \rightarrow High aperture number
- Big hole \rightarrow Small aperture number
- ightarrow small amount of light
- \rightarrow big amount of light
- \rightarrow darker image
- \rightarrow brighter image

Aperture: f/4.5

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPLANATIONS (DOF)

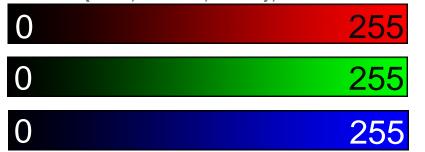
- The "Depth of Field" (DOF) is the range in which a scene appears acceptably sharp.
- Within the DOF, a sensor can read a code or detect an object, without changing focal position or lens.
- The depth of field depends on
 - Focal length / Focal position
 - Working / Reading distance
 - Lens
 - Aperture
 - Camera sensor resolution
- Main effects
 - Large aperture
 - Long focal length \rightarrow small DOF
 - Short working distance \rightarrow small DOF
- → small DOF
- Small aperture
- Short focal length
- Long working distance
- \rightarrow large DOF
- \rightarrow large DOF
- \rightarrow large DOF

13

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. PIXEL INFORMATION

Black and white – binary values, 0 or 1

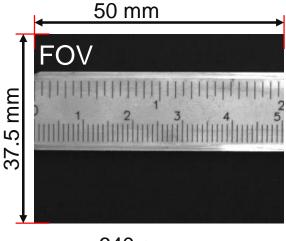
Gray scale – values from 0 to 255

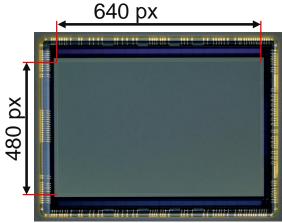


1 bit/pixel

1 bit/pixel

Color – RGB (Red, Green, Blue), each channel has a value from 0 to 255



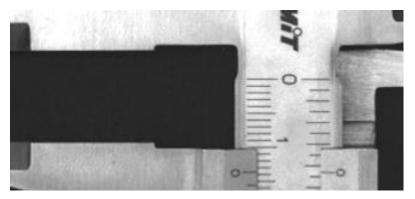

1 bit/pixel

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. OBJECT RESOLUTION

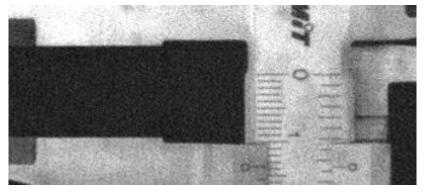
SICK Sensor Intelligence.

- Object resolution
 - Physical dimension on the object, that corresponds to one pixel on the sensor (mm/pixel)
 - \blacktriangleright \rightarrow Which length (mm) is equal to one pixel
- Example
 - FOV size
 - Width (x): 50 mm
 - Height (y): 37.5 mm
 - Sensor resolution
 - Width (x): 640 px
 - Height (y): 480 px
 - Object resolution (by width)
 - 50 mm / 640 px = 0.08 mm/pixel

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. EXPOSURE / GAIN



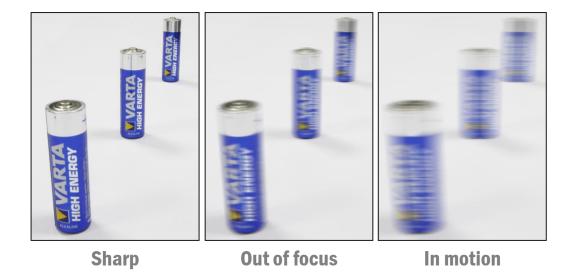
- Exposure is the amount of light that is recorded by the sensor
- Exposure depends on
 - Exposure time
 - Aperture size
 - Object illumination
 - Sensor's light sensitivity



Electronic gain

Increased gain allows shorter exposure time, but amplifies noise

Normal gain



High gain

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. BLUR

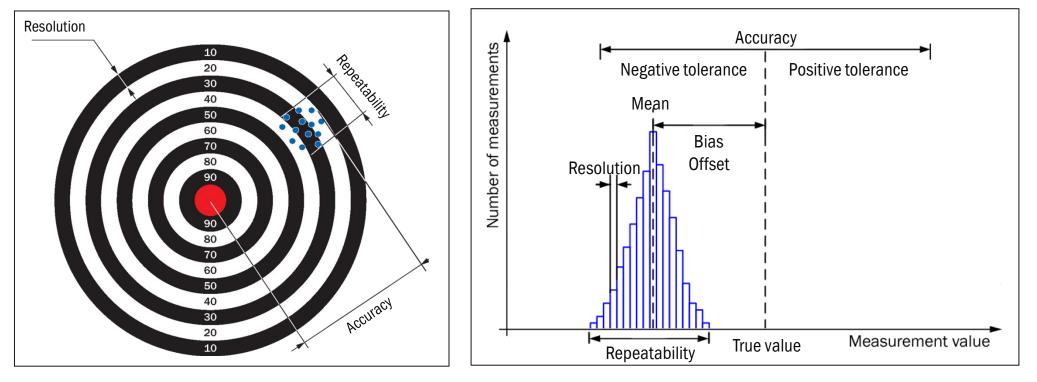
- Blur is caused by
 - Lens is out of focus
 - Motion
 - Camera shake (e.g. vibrations)

Blur is avoided by

- Focus adjustment
- Short exposure time + intense light
- Mount separately from vibrating machine

Reduce exposure time

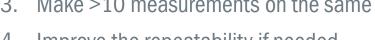
Use stronger light


INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. RESOLUTION, REPEATABILITY AND ACCURACY

Resolution, repeatability and accuracy are connected, but not the same

Intuitive definitions

Statistical definitions


- Off-set compensation makes accuracy = repeatability
 - Requires that the true value (bull's eye) is known from a reference method

19

INDUSTRIAL IMAGE PROCESSING 2D & 3D 1. PROCEDURE TO ACHIEVE ABSOLUTE ACCURACY

First get good repeatability

- Ensure a good image quality 1.
- Calibrate the setup with a checkerboard target 2.

Improve the repeatability if needed 4.

5. Measure the object(s) with a trusted reference method

6. Calculate the average measurement error (off-set)

Sensor Intelligence.

- 7. Subtract the error by "off-set compensation"
- 3. Make >10 measurements on the same object to see the repeatability

3 5, 6, 7 Good image **Good** accuracy **Poor image Calibrated image** Poor repeatability Good repeatability Poor accuracy

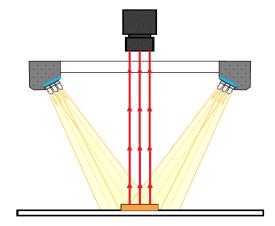
INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. THE IMPORTANCE OF LIGHT

- Just like the eye, machine vision depends on light and optics to work
- Different lighting methods can have very different visual effects
- The success of an application often depends on the image quality, which depends on a good lighting method
- Which method is "right" depends on the surface characteristics, the feature type, and the object presentation

Button as seen in three different lighting situations

INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. AMBIENT LIGHT

Ambient light is seldom used as light source for machine vision because of its variability


Usually, the application is covered with a shroud to guarantee constant light

- Assume a shroud is needed until the opposite is proven
- As an exception, controlled ambient light can be used as part of the vision application

INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. RING LIGHT

- The ring light principle
 - Ring illumination on axis with camera
 - High intensity \rightarrow short exposure times
 - Well-suited for easy and high speed applications

Ambient light

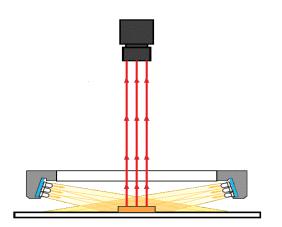
Ring illumination

A ring light produces direkt illumination

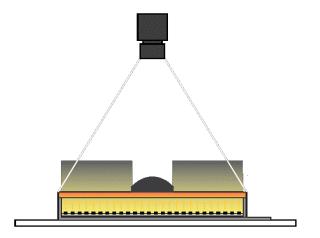
INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. DARKFIELD ILLUMINATION

- The darkfield principle
 - Low-angle light
 - Enhances edges for pattern recognition and scratch detection

Darkfield illumination


 Well-suited for inspecting sharp edges and very small 3D features on flat surfaces

Ambient light



INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. BACKLIGHT ILLUMINATION

The backlight principle

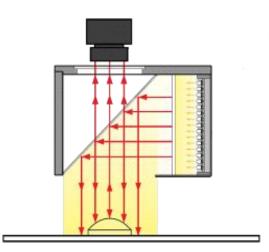
- Light from behind the object
- Enhances the object's silhouette
- Well-suited for inspecting an object's contours, for example shape or dimensions

Ambient light

Backlight illumination

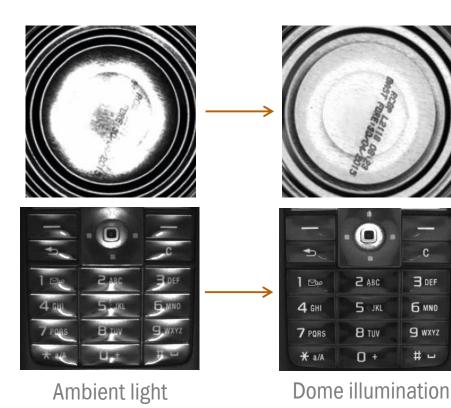
A backlight produces the silhouette

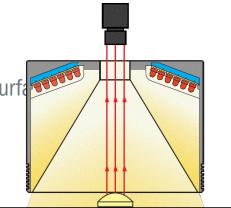
INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. ON-AXIS-ILLUMINATION


- The on-axis (co-axial) principle
 - The light is parallel to the optical axis, thanks to a semi-transparent mirror
 - Enhances contrasts between flat and sloped areas
 - Well-suited for inspecting the inside of hollow objects and small 3D features on flat surfaces

Ambient light

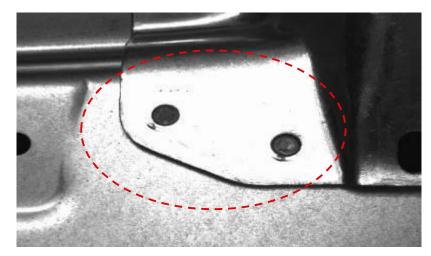
On-axis illumination



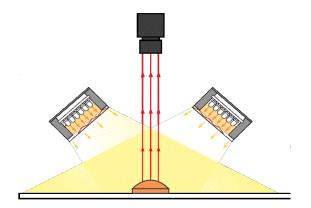

An on-axis light produces the silhouette

INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. DOME ILLUMINATION

- The dome principle
 - ► The light is very diffuse thanks to an internal diffusor
 - Enhances true contrast and suppresses disturbing reflections in shiny surface
 - Well-suited for inspecting shiny objects

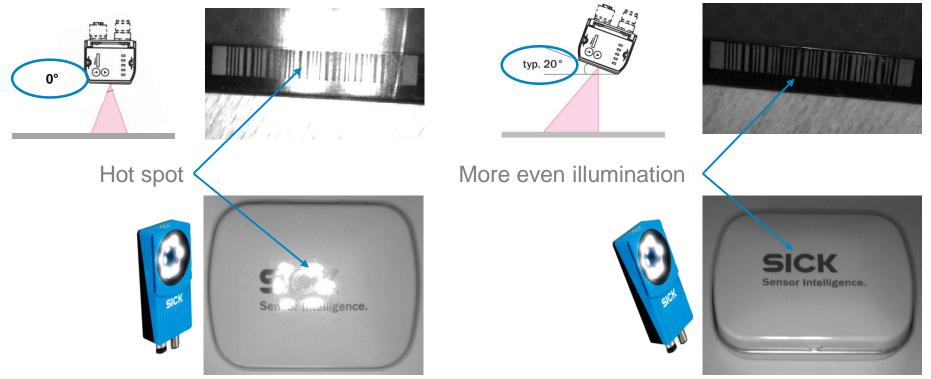


A dome light produces very diffuse light


INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. SPOT AND BAR LIGHT ILLUMINATION

- Spot and bar light principle
 - Large freedom of geometry for targeted illumination
 - Which features are enhanced depends on the chosen geometry
 - Well-suited for low-cost (few LEDs), simple tasks

A spot light is enough to illuminate the critical features (weld spots, automotive)



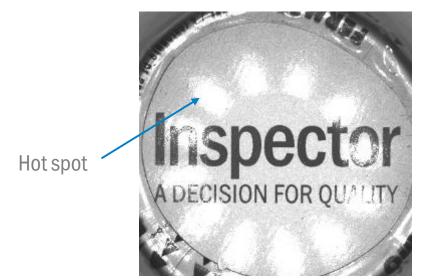
A spot or bar light can illuminate in many ways thanks to its flexible mounting

INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. AVOID HOT SPOTS > TILT THE CAMERA

- Glossy (shiny) materials reflect direct light sources \rightarrow hot spots
- Tilt the camera to deflect the hot spots away from the lens

- Note: Tilting \rightarrow perspective problems when
 - ► High accuracy is needed
 - The object can rotated 360°

INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. AVOID HOT SPOTS > DIFFUSE LIGHT



If tilting the camera is no option

Use diffuse light to avoid direct reflections

Ring light gives direct light and hot spots

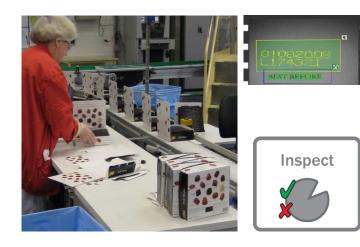
Inspector with built-in dome gives diffuse light

INDUSTRIAL IMAGE PROCESSING 2D & 3D 2. OPTICAL FILTERS

- Use filters to enhance contrast and suppress ambient light
 - Available in different colors
 - Depending on type, either mount on lens or between lens and camera
 - Filters reduce intensity \rightarrow longer exposure time needed \rightarrow increased motion blur

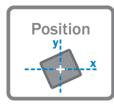
Filters for Inspector

Filters for IVC-2D



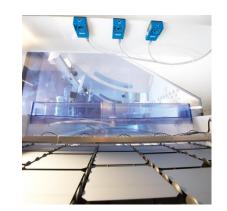
Blue light + (optionally) blue filter maximizes contrast!

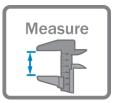
INDUSTRIAL IMAGE PROCESSING 2D & 3D 3. INSPECTION, POSITIONING, MEASUREMENT, READING



Precense detection of datcode

Roboter guidance




Barcode & OCR reading

Solar waver alignment

INDUSTRIAL IMAGE PROCESSING 2D & 3D 3. APPLICATION

INDUSTRIAL IMAGE PROCESSING 2D & 3D

Config

CONFIGURABLE SENSORS

Configuration of parameters

- ► Sliders
- ► Click
- Drag'n'drop
- Conditions

	Job 0 - Storage 0%	
age Taok Results Interfaces	•	Task
	0.017 0.01 1<	Hage Land 2 H

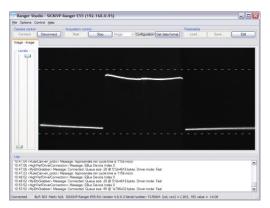
- Processing in the device
- Internally calculated results

PROGRAMMAB	LE CAMERAS

Program

Device programing

- Block programs
- Scripting
- Low level programing (C, C++, Java)
- Integration of external image libraries


SICK App Tie 10	Build Run Connection Help	5	CK AppStudio	-	n x	
and hallpers. 🗶 🍯 🖻	× ÷ ÷ š ÷ š • • × № € & & å					
Appliquer	Pineta X	al contract	C DeviceTage			ł
	1 configure the JPEC encoder: and for JPEC instance on TPSL	0 00000	Co nevcerage			
15 C	2 can be nil if unavailable				¢, i	C
 GL2Vistor) 3peg = Image,Encoder,JPEG.create()	Device Model:	Fulfeatured			
GI Ivisiofiet	4 set compression quality 20100					
G Checkerboard/NuCodeleg	5 Deege.Encoder.JPE0.setQuality()peg, 00)					
Git Measuratticies	6					
GI Facameters	7 configure e.g. FTP connection to send jpeg 8 ftp = FTPClient.(prestel)					
OR Reconciliations	a rep = Providence ()					
G Rangerhaltsmöufistlingbuls	10 configure the GeoCarr IF (AFI preliminary)					
G SmoleSthchingTest	11 trans = Image.Transform.Projective.create()					
G Test2000Calibration	12 H = (1, 0, 0, 0, 1, 0, 0, 0, 1) just the identity transform					
(i) Testhung	13 DeeperTransform.Projective.setNomography(trans, N)					
	14 R = (0, 0, 0, 0, 0, 0 do not compensate for less distortion 15 Image, Transform, Projective, petDistortion(trans, F)					
 Gi Testertorf5c.jp,182,168,3,300 	15 Image. Transform. Projective. BetFistortion(trans, P) 16					
G TestHemphis1	17 count = 0					
Gil V252xxGample	18 the callback that is being insued by every image acculation					
 GittestCoProc 	19 function caliback(image)					
 R) scripts 	20 count = count + 1					
🔯 test.kus	21 apply the transform to the image					
G testicop	22 Iseal transformedImage = Image.Transform.Projective.transform(image) 23 use the JPEO IP to generate a binary buffer containing the JPEO second image					
	23 use the JPEO IP to generate a binary buffer containing the JPEO encoded image 24 local buffer = Image.Encoder.JPEG.encode(ipeg, transformedImage)					
	25 prepare a filename for the TTP transfer with sequence number					
Larstants Blocks Browser	20 local filename = string.formet('image_tu.jpg', count)					
	37 Mend to FTP RETYEE					
	28 FTPCiient.put(ftp, filename, buffer)					
	29 end					
	30					
	22					
	22					
	34					
	35					
		<				2
	Console 📾 Search 🔉 Debug 🙀 AppDate					
					×	8
	Enclar -> photement is place breakbon is analyzenera speed in par					7
	ENC1 -> Increment = 50027 Direction = FORWARD Speed = 0 ENC2 -> Increment = 5600 Direction = BACKWARD Speed = 10					
	ENC1 -> Increment a \$5027 Direction a FORWARD Speed a 0					
	ENC2 -> Increment = 5655 Direction = BACKWARD Speed = 10					
	ENC1 -> Increment = 50027 Direction = POPMIRD Speed = 0 ENC2 -> Increment = 5540 Direction = BACKWARD Speed = 10					
	ENC1 -> Increment = 50027 Direction = FORWERD Speed = 0					
	EXC2 -> Increment = 566 Direction = BACKWARD Speed = 10 BNC1 -> Increment = 5007 Direction = SCRWARD Speed = 0					

- Processing in the device
- Internally calculated results

STREAMING CAMERAS

- Raw data output to
 PLC
- Stream **)1101**

- Computer
- Device configuration only to acquire images and to optimize the output of the raw data

NO internally calculated results!

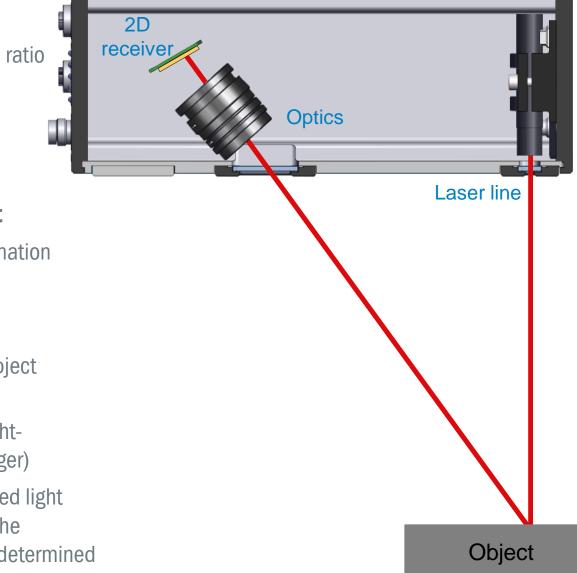
INDUSTRIAL IMAGE PROCESSING 2D & 3D 3. VISION PORTFOLIO - 2D

J .	VISION FURIFULIU - A	ΖL)		Sensor Intelligence.	
	CONFIGURABLE SENSOR		PROGRAMMABEL CAMERA		STREAMING CAMERA	
•	Lector62x/63x/64x/65x (Barcodereading - Matrix)	-	InspectorP63x (Vision - Matrix) HALCON	•	Midi-Cam (Vision -Matrix)	
	 ICR88x / 89x (Barcodereading - Line) 	-	(Vision - Matrix)	-	Vision - Matrix)	
•	Inspector (Vision - Matrix)		InspectorP65x (Vision - Matrix)	•	SIM4000 (Controler)	
•	InspectorP (configurabel) (Vision - Matrix)					

INDUSTRIAL IMAGE PROCESSING 2D & 3D

4. 3 DIFFERENT TECHNOLOGIES - TRIANGULATION

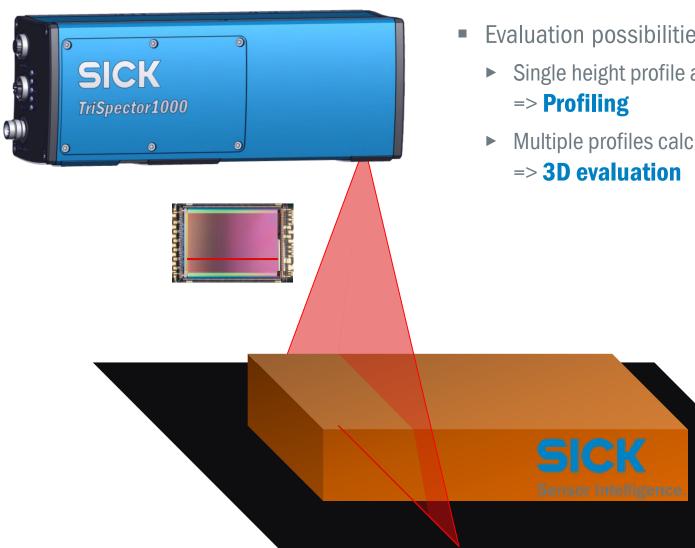
+.5 DITTENTITEOTINOLO		eoneen menigeneen		
TRIANGULATION	TIME OF FLIGHT	STEREO		
 Triangulation ratio between laser line camera object height 	 Based on time, the light needs to "fly" from the sensor speed of light optical properties 	 Binocular principle two cameras passive system 		
► Range: ≤ 1,5 m	► Range: ≤ 7.2 m	► Range: ≤ 5m		
► Resolution: ≥ 0.05 mm	► Repeatability: ≤ 30 mm	► Repeatability : ≤ 1mm		


INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TRIANGULATION - 2 DIMENSIONAL MEASUREMENT

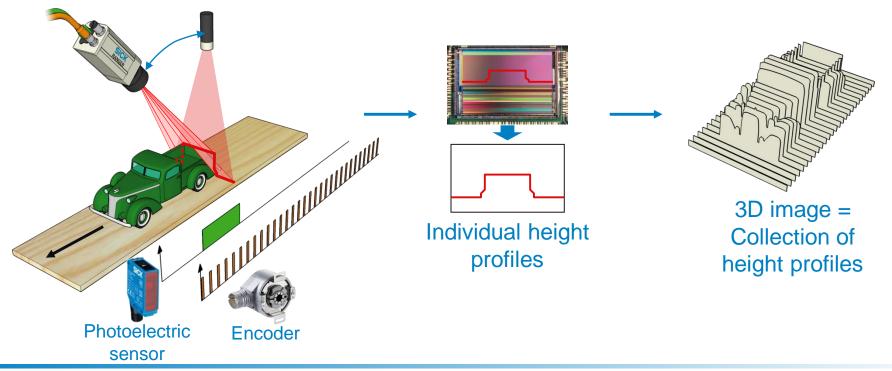
- **Triangulation**
 - Height information by triangulation ratio
- \Rightarrow 3D information
- **Movement needed!**
- Active system => light is sent out
 - Special conditions for scene illumination

Functional principle

- A laser line is projected onto the object being measured
- The reflection is mapped onto a light-sensitive element (2D camera imager)
- Based on the position of the mapped light spots and the known geometry of the sensor optics, the height profile is determined


2D

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TRIANGULATION - 3 DIMENSIONAL MEASUREMENT

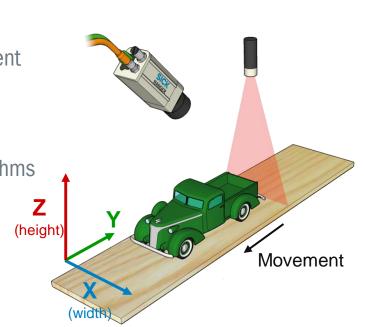


- Evaluation possibilities:
 - Single height profile analysis
 - Multiple profiles calculated to a 3D image

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. 3D EVALUATION

- Working principle
 - A laser line is projected on the object
 - Individual height profile (laser displacement) is recorded by the camera (angled view)
 - Movement \rightarrow multiple contour profiles are collected \rightarrow put together to a 3D image
 - Encoder pulses \rightarrow control equal profile distances \rightarrow no distortion
 - Photoelectric sensor \rightarrow starts the image recording

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TRIANGULATION - RESOLUTION


Image resolution

- Image length (y) and width (x) in pixels
- Height resolution in mm

Object resolution

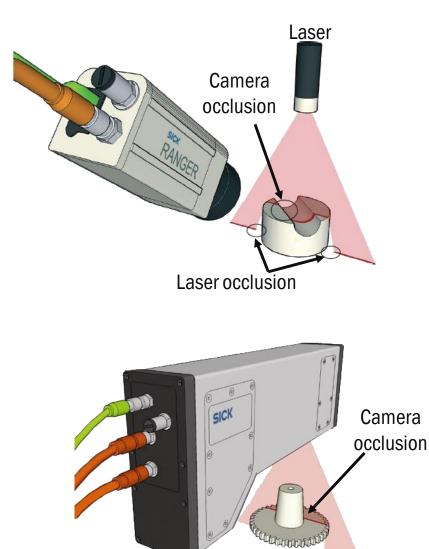
- Like a 2D setup with perspective, x and y resolution can be different
- X resolution (mm/pix) determined by the pixel width and optics
- Y resolution (mm/pix) determined by the scan rate
- Z resolution (mm) determined by the geometry and sensor algorithms

■ For systems with flexible lens and geometry (Ranger), 3D resolution is normally application specific → no common specification in data sheet possible

β

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TRIANGULATION - OCCLUSION AND MISSING DATA

Camera occlusion / shadowing


 The laser line is hidden from the camera behind object features

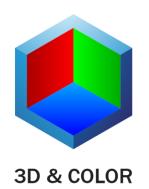
Laser occlusion

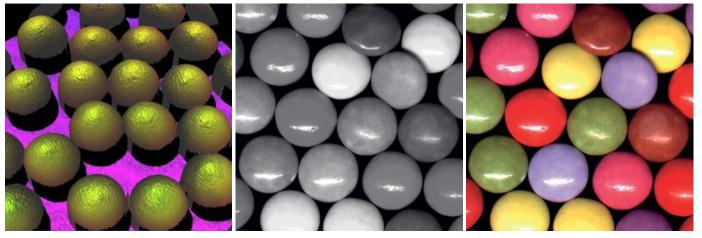
 The laser cannot illuminate parts behind object features


Missing data

 Parts of the image contain no information because of occlusion or underexposure

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TRIANGULATION - 3D AND COLOR TECHNOLOGY


- High-speed 3D and color in one camera
- Color = combination of three separate lines with red, green and blue filters on the sensor
- Color can be very useful in addition to 3D, grayscale and scatt
- Creation of a colored 3D image is possible



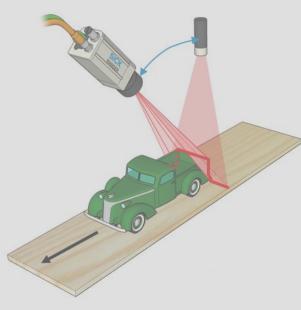
SICK

Sensor Intelligence.

Example: M&M's separation

3D data

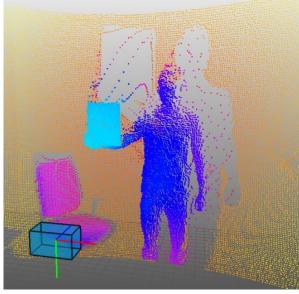
Gray scale


Color

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TIME OF FLIGHT

TRIANGULATION

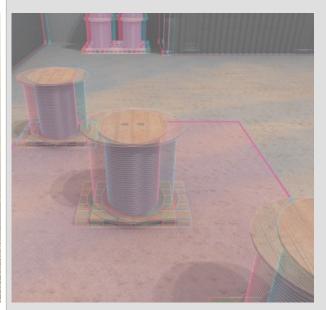
- Triangulation ratio between
 - laser line
 - ► camera
 - object height



- ▶ Range: ≤ 1,5 m
- ► Resolution: ≥ 0.05 mm

TIME OF FLIGHT

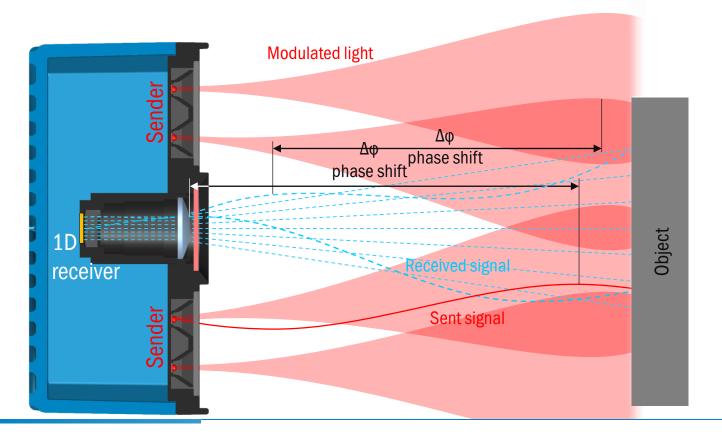
Based on


- time, the light needs to "fly" from the sensor
- speed of light
- optical properties

- Range: ≤ 7.2 m
- ► Repeatability: ≤ 30 mm

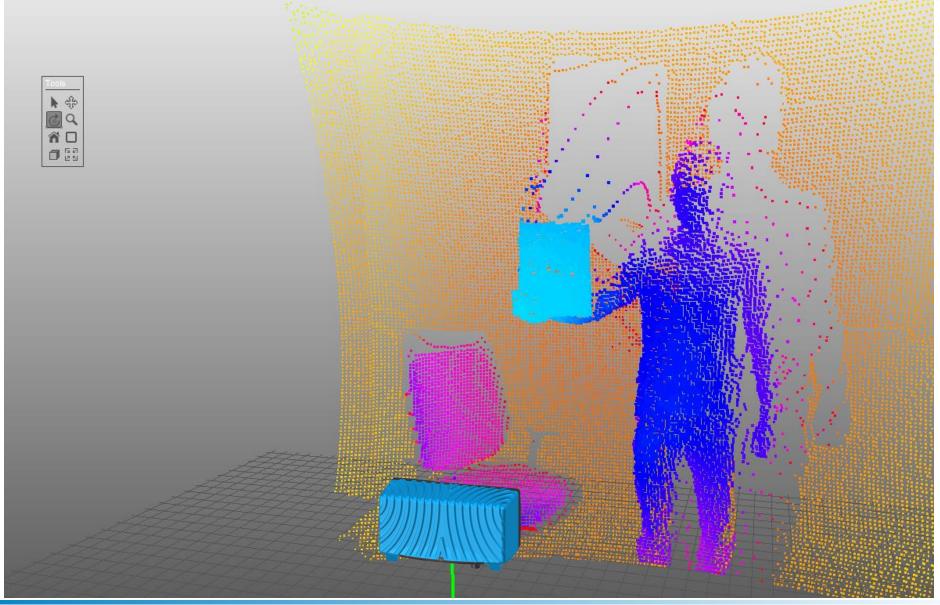
STEREO

- Binocular principle
 - ► two cameras
 - passive system



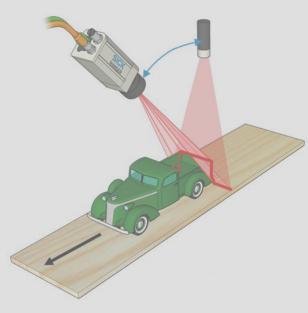
- Range: $\leq 5m$
- ► Repeatability: ≤ 1 mm

INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TIME OF FLIGHT – PHASE CORRELATION – 2


- PIMENSIONAL Modulated light is sent out continuously ("light waves") – LEDs - no laser => illuminated area
- The reflected light wave is evaluated per pixel continuously
- The phase shift between sent wave and the received wave per pixel is measured
- The distance is calculated per pixel based on the phase shift

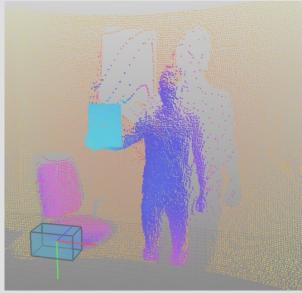
INDUSTRIAL IMAGE PROCESSING 2D & 3D 4. TIME OF FLIGHT – PHASE CORRELATION – 3 DIMENSIONAGENSOR Intelligence.

- Modulated light is sent out continuously ("light waves")
 LED array => 3D illumination
- The light is reflected back to the camera
- The reflected light wave is evaluated per pixel at imager continuously
- The phase shift between sent wave and the received wave per pixel is measured
- The distance is calculated per pixel based on the phase shift


INDUSTRIAL IMAGE PROCESSING 2D & 3DSICK4. TIME OF FLIGHT - PHASE CORRELATION - 3 DIMENSIONAS
ensor Intelligence.

TRIANGULATION

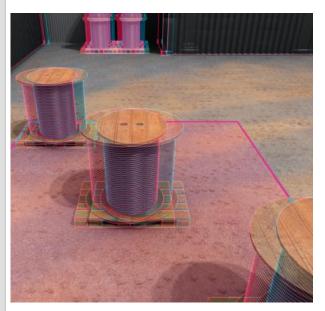
- Triangulation ratio between
 - laser line
 - ► camera
 - ▶ object height


- ▶ Range: ≤ 1,5 m
- ► Resolution: ≥ 0.05 mm

Based on

time, the light needs to "fly" from the sensor

TIME OF FLIGHT

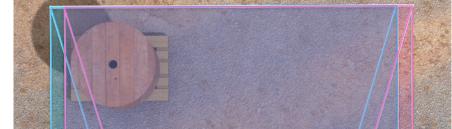

- ► speed of light
- optical properties

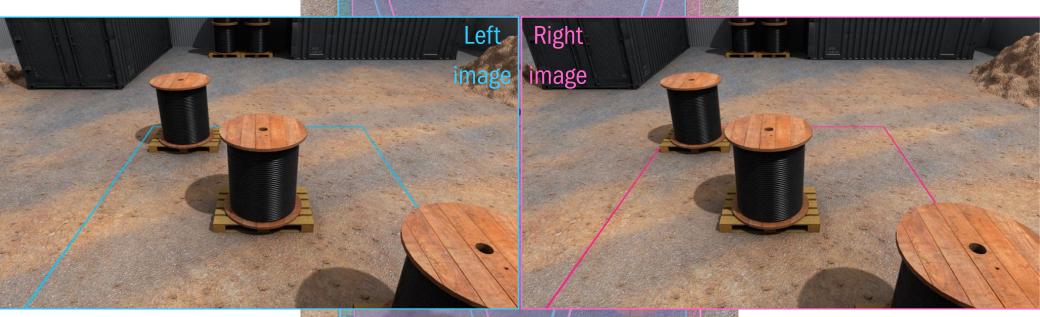
- ► Range: ≤ 7.2 m
- ► Repeatability: ≤ 30 mm

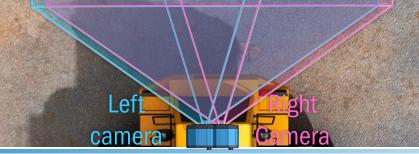
STEREO

- Binocular principle
 - ► two cameras
 - passive system

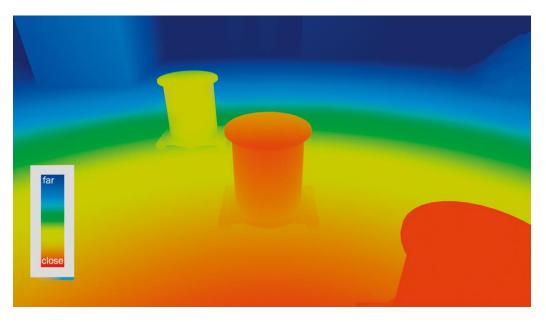
- Range: $\leq 5m$
- ► Repeatability: ≤ 1 mm




- Two 2D cameras with slightly different view angles
 - Comparable to human binocular vision
- \Rightarrow 3D information
- Snapshot camera no movement needed !
- Passive system => no light is sent out
 - No special conditions for scene illumination



 Two 2D cameras with slightly different view angles

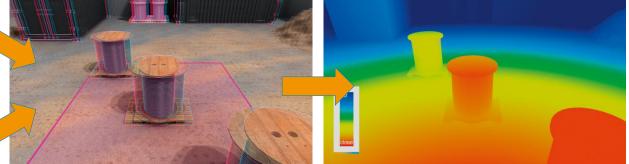


 \Rightarrow Overlay of both images

 Two 2D cameras with slightly different view angles

 \Rightarrow Overlay of both images

 \Rightarrow Depth calculation

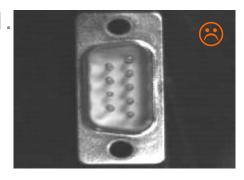


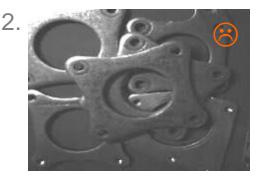
TWO 2D IMAGES

OVERLAY

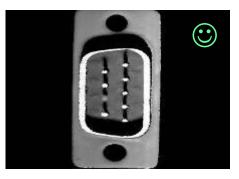
DEPTH CALCULATION

INDUSTRIAL IMAGE PROCESSING 2D & 3D 5. APPLICATION 2D OR 3D ?




- When to use 2D?
 - Information is in contrast difference
 - Printings
 - Surfaces
 - ...
- When to use 3D?
 - Information is in height difference
 - Sizes (Width, heights, volume, ...)
 - Shape
 - ...

Examples


- ▶ 1. Which pin is too low?
- 2. Which steel part is on top?
- 3. Which wrapper has misaligned text?

2D Image

3D Image

INDUSTRIAL IMAGE PROCESSING 2D & 3D 5. APPLICATION – 3D

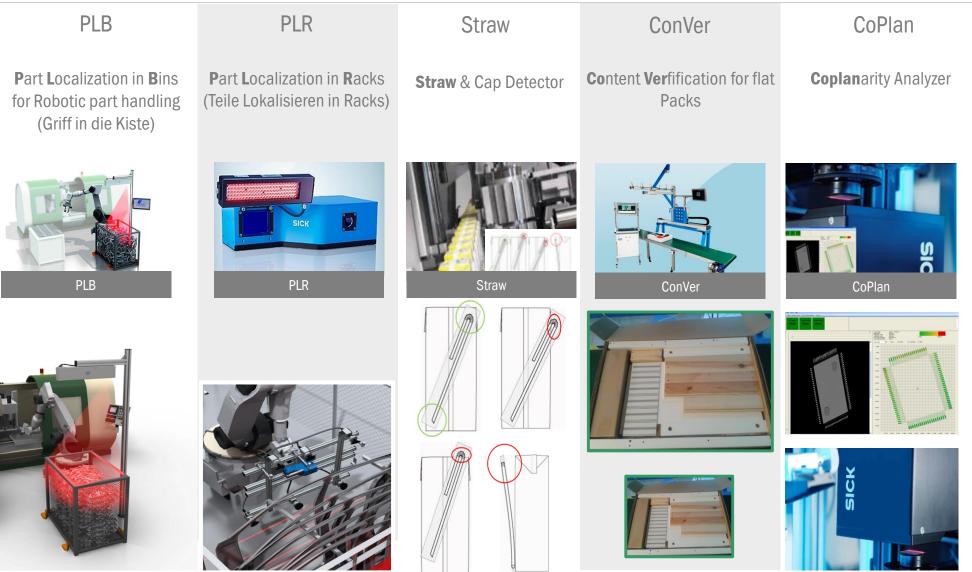
SICK Sensor Intelligence.

Application

- Inspect chocolate praline for completeness and correct orientation before final packaging
- Color independent just height based
- Digital output for good / bad classification
- Product
 - TriSpector1000

- Application
 - Checking brake pads using 3D vision
 - The sensor evaluates surfaces, heights, distances, angles, ...

- Application
 - Measure the height and load of palettes in standstill applications
 - Used for automated loading and unloading
- Product
 - 3vistor-T


- Application
 - ▶ 360° measurement of logs
 - Automatic optimization of board cutting
- Product

INDUSTRIAL IMAGE PROCESSING 2D & 3D 5. APPLICATION – 3D

INDUSTRIAL IMAGE PROCESSING 2D & 3D 5. PRODUCTS FOR 3D VISION APPLICATIONS

2D VISION

3D VISION

INDUSTRIAL IMAGE PROCESSING 2D & 3D 5. DIFFERENT VARIANTS

Config

CONFIGURABLE SENSORS

- Configuration of parameters
 - ► Sliders
 - ► Click
 - Drag'n'drop
 - Conditions

rage Task Results Interfaces			
New	-	Task w Shape Locator 0	æ
	Read Units	Norm (maps tanks 1 Scange Stange Stange	-/- 20 - -/- 20 - -/

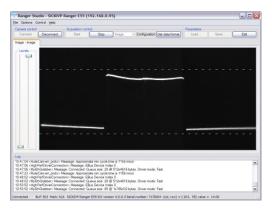
- Processing in the device
- Internally calculated results

S

Program

Device programing

- Block programs
- Scripting
- Low level programing (C, C++, Java)
- Integration of external image libraries


SICK 🔤	Edit Build Run Connection Help	8	CKAppStudio	-	•	×
anar kandiganca. 🖝 🕯	(金) ※※※※ ※ ※ ※ ち さ 、 と 随 条 条 修					
Acceleratory	🕐 testua X	5 Emulator	C DeviceTage	24	Morite	a
	0 1 configure the JPEC encoder: ank for JPEC instance on FPSL				đ	d
• GE ZVieter	2 can be nil if unavailable					
 Of Instantest 		vice Model:	FullFeatured	•		
	4 set compression quality 20100 5 Immae.Encoder.JPE0.setOuality(teeg. 60)					
 G CheckerboardPlusCodeApp 	a suppression of the state of t					
 Gi MeasuraHoles 	7 configure e.g. FTP connection to mend jpeg					
 GI Farameters 	<pre># ftp = FTPClient.create()</pre>					
 Gi RangerHalsond 	5					
 G RangerlakonExtellingBuls 	10 coafigure the GeoCorr IP (API preliminary)					
 G SimpleStitchingText 	11 trans = Image.Transdorm.Projective.create()					
 Git Test2000Calibration 	12 H = (1, 0, 0, 0, 1, 0, 0, 0, 1) yust the identity transform 13 Image Transform Projective setNonography(trans, N)					
Git Testhuma	14 R = (0, 0, 0, 0, 0, 0) do not compensate for lens distortion					
· Git Testerhoffs in 162 168 3						
 G Testilemetial 	16					
 GE V25LoGengie 	17 count = 0					
 OF testCohos 	18 the callback that is being issued by every image acquisition					
	19 function caliback(isage)					
▼ R) scripts	20 count = count + 1					
🔯 testikus	21 apply the transform to the image 22 land, transformedians - Dane, Transform, Projective, transform(image)					
 Gi testicop 	23 use the JPEO IF to presente a binary buffer containing the JPEO encoded many					
	24 Jacal buffer = Image, Encoder, JPEG, encode(lpeg, transformed[mage))					
& Canatanta Blocks Browser	23 prepare a filename for the FTP transfer with sequence number					
Lorelants Boos provider	26 local filename = string.format('image_tu.jpg', count)					
	A 27 pend to FTP server					
	20 FTPClient.put(ftp, filename, buffer) 22 end					
	29 end					
	31					
	37					
	22					
	34					
	35					
				_	_	22
	Concole 📾 Search 🔅 Debug 🚔 AppData					
	Tanua - P anowner a hub sambon a an Artanu Jampi a ar				×	8
	ENCL -> Increment = 50027 Direction = FORWARD Speed = 0					1
	ENC2 -> Invenent = 5680 Direction = 8ACKWARD Speed = 10					
	ENC1 -> Increment = 50027 Direction = ROPARID Speed = 0 ENC2 -> Increment = 5605 Direction = BACKWARD Speed = 10					
	(NC2 -> Increment = 5640 Direction = 84CXWARD Speed = 10					
	8NC1 -> Increment = 50027 Direction = ROPAIRO Speed = 0 BNC2 -> Increment = 5545 Direction = BACKWARD Speed = 10					
	8NC1 -> Invenent = 50027 Direction = FORWERD Speed = 0					
	DNC2 → Increment + 5650 Direction + BACKWARD Speed + 10					

- Processing in the device
- Internally calculated results

STREAMING CAMERAS

- Raw data output to
 PLC
- Stream)1101

- Computer
- Device configuration only to acquire images and to optimize the output of the raw data

NO internally calculated results!

INDUSTRIAL IMAGE PROCESSING 2D & 3D SICK 5. VISION PRODUCTS - 3D Sensor Intelligence. **CONFIGURABEL SENSOR PROGRAMMABEL CAMERA** STREAMING-CAMERA **TriSpector1000** TriSpectorP1000 **Ranger / Ranger3** SICK APP (Vision - Triangulation) (Vision - Triangulation) (Vision - Triangulation) HALCON **Ruler / ScanningRuler** (Vision - Triangulation) IVC-3D (Vision - Triangulation) Visonary (Vision - TOF) **Visionary** (Vision - TOF) **SIM4000** SICK APP **PLB520** HALCON (Controler) (Vision - Stereo)

THANKS FOR YOUR ATTENTION!

Renè Klausrigler

Productmanagement "Identification & Measuring"

rene.klausrigler@sick.at